Genomic breeding value prediction using three Bayesian methods and application to reduced density marker panels

نویسندگان

  • Matthew A Cleveland
  • Selma Forni
  • Nader Deeb
  • Christian Maltecca
چکیده

BACKGROUND Bayesian approaches for predicting genomic breeding values (GEBV) have been proposed that allow for different variances for individual markers resulting in a shrinkage procedure that uses prior information to coerce negligible effects towards zero. These approaches have generally assumed application to high-density genotype data on all individuals, which may not be the case in practice. In this study, three approaches were compared for their predictive power in computing GEBV when training at high SNP marker density and predicting at high or low densities: the well- known Bayes-A, a generalization of Bayes-A where scale and degrees of freedom are estimated from the data (Student-t) and a Bayesian implementation of the Lasso method. Twelve scenarios were evaluated for predicting GEBV using low-density marker subsets, including selection of SNP based on genome spacing or size of additive effect and the inclusion of unknown genotype information in the form of genotype probabilities from pedigree and genotyped ancestors. RESULTS The GEBV accuracy (calculated as correlation between GEBV and traditional breeding values) was highest for Lasso, followed by Student-t and then Bayes-A. When comparing GEBV to true breeding values, Student-t was most accurate, though differences were small. In general the shrinkage applied by the Lasso approach was less conservative than Bayes-A or Student-t, indicating that Lasso may be more sensitive to QTL with small effects. In the reduced-density marker subsets the ranking of the methods was generally consistent. Overall, low-density, evenly-spaced SNPs did a poor job of predicting GEBV, but SNPs selected based on additive effect size yielded accuracies similar to those at high density, even when coverage was low. The inclusion of genotype probabilities to the evenly-spaced subsets showed promising increases in accuracy and may be more useful in cases where many QTL of small effect are expected. CONCLUSIONS In this dataset the Student-t approach slightly outperformed the other methods when predicting GEBV at both high and low density, but the Lasso method may have particular advantages in situations where many small QTL are expected. When markers were selected at low density based on genome spacing, the inclusion of genotype probabilities increased GEBV accuracy which would allow a single low- density marker panel to be used across traits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model

In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...

متن کامل

Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method

The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

Effect of marker density and trait heritability on the accuracy of genomic prediction over three generations

The aim of this study was to determine the effect of marker density, level of heritability, number of QTLs, and size of training set on the genomic accuracy over three generations. Thereby, a trait was simulated with heritability of 0.10, 0.25 or 0.40. For each animal, a genome with 20 chromosomes, 1 Morgan each, was simulated. Different marker densities (2000, 4000 and 6000 markers) and 400 an...

متن کامل

Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods

The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010